Prince William Family of Schools

Mathematics

Approach to Calculation

Name

The purpose of this document is to outline the stages of progression for written calculation methods for the four number operations. Written methods of calculation are based on mental strategies, for example number bonds to 10, 20 and 100 and quick recall of times tables and associated divisions.

Each of the strategies within this document have been organised in order and it is really important to take into account the levels in which children are working so that each child has a sound understanding of the mathematics and not just a mechanical method for finding an answer. When a new strategy is introduced previous stages may need to be revisited to consolidate understanding. A sound understanding of place value and the number system is essential for children to carry out calculations efficiently and accurately.

All children should have, at their level, a reliable method for the four operations which they understand and can explain.

Addition

Near doubles	$8+9=17$ is the same as 1 more than double $8(16+1=17)$ or 1 less than double $9(18-1=17)$ $37+36=73$ is the same as 1 more than double $36(72+1=73)$ or 1 less than double $37(74-1=73)$
Near Multiple of 10 and adjust This is a good mental strategy	$34+48=82$ is the same as 34 add 50 and subtract 2 $64+71=135$ is the same as 64 plus 70 plus 1 more
Partitioning $T U+T U$ Mental strategy with jottings	$86+37=123$ or $86+37=123$ $80+6$ $(80+30)+(6+7)$ $30+7$ $110+13=123$ $110+13=123$
Expanded Column method. Add the units first. You should be able to explain clearly what you are doing with understanding of place value.	47 $+\quad 76$ 13 110 123648 146\quad200 934
Column method with carrying. Carry digits are recorded below the line, using the words 'carry ten' or 'carry one hundred' not 'carry one'.	$\begin{array}{r} 47 \\ +\quad \begin{array}{r} 648 \\ 123 \\ 1 \end{array}+\frac{286}{934} \\ \hline 11 \end{array}+\begin{array}{r} 268.74 \\ 86.046 \\ \hline 47.8 \\ \hline \frac{402.586}{221} \end{array}$ Extend understanding into decimals and in context of money and measures.

Subtraction

Mental Skills - Recognise the size and position of numbers -Count back in ones and tens - Subtract multiples of 10 from any number	count back take away fewer subtract minus less difference
Counting back using a number line	$15-7=8$ $105-47=58$ Or
Near multiple of 10 and adjust This is a good mental strategy	$105-47=58$ same as subtract 50 and then add back 3

Expanded method leading to column method	$\begin{array}{r} 741-367=374 \\ \begin{array}{l} 600-30+11 \\ 700+40+1 \\ - \\ 300+60+7 \\ \hline 300+70+4 \end{array} \end{array}$ 13 6 ふ 11 7141 3 6 7 3 7 4 Are you choosing the best strategy for yourself?
Extend column method to include zero values	

Extend column method to include decimals and zero values Line up the decimal points Place an extra zero if necessary	$90.4-58.75=31.65$ Are you choosing the best strategy for yourself?
Choose the best strategy for yourself? Think about each question you're doing and decide on the best strategy.	A column method may not always be the most efficient strategy. What about 90.4-58.75? Near multiple and adjust? subtract $60=30.4$ add back $1.25=31.65$

Multiplication

Mental skills

- Count on in different steps
- Double and halve numbers
- Recognise multiplication as repeated addition
- Quick recall of multiplication facts
- Use known facts to derive associated facts
- Multiplying by 10, 100 and
multiplication
product once twice three times double groups of repeated addition
lots of

1000

- Estimation
- Multiplying by multiples of 10

Count in groups and record

 as arraysmultiply
array
row
column
times
multiple
2 groups of $4=8$ 4 groups of $2=8$
$2 \times 4=8$ $4 \times 2=8$

How many groups of 3 can be made from 12?
How many groups of 4 can be made from 12?

Apply times tables and associated facts to groupings
$3 \times 4=12 \quad 12 \div 4=3$
$4 \times 3=12$
$12 \div 3=4$
Count on in groups along a number line
$5 \times 6=30$

Division

Mental Skills

- Count back in different steps
- Double and halve numbers
- Recognise division as repeated subtraction
- Quick recall of division facts
- Use known facts to derive associated divisions
- Divide by 10,100 and 1000
- Divide by multiples of 10
Practical examples of
sharing including
remainders
Understand grouping and be able to explain arrays

group groups of

lots of divide

dividend divisor quotient

division factor
remainder divisible half halve share

Key Language $18 \div 3=6$
18 is the dividend
3 is the divisor
6 is the quotient

I have 7 sweets to share between 3 of us, what shall I do?

fogt	(eyt		- ${ }^{\text {din }}$

20 divided into groups of 4
gives 5 groups $20 \div 4=5$
$24 \div 4=6$

$27 \div 4=6$ rem 3

Dividing by 10 or 100		$250 \div 10=25$		$2500 \div 100=25$									
			$\begin{array}{\|c\|c\|} \hline \text { Ten } & \text { Unit } \\ 10 & 1 \\ \hline \end{array}$	Thoussen 1000	$\begin{array}{\|c\|} \hline \text { Hundred } \\ 100 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Ten } \\ 10 \\ \hline \end{array}$	Unit1						
Dividing	Digits Move												
		25	0	2	5	0	0						
$\div 10$	1 place RIGHT	2	5			2	5						
$\div 100{ }^{2}$ places RIGHT		$95.2 \div 10=9.52$											
		9	5	2									
			9	5		2							
		$360 \div 100=3.6$			Ten								
			${ }_{10}^{\text {ren }}$. ${ }^{\text {T}}$	${ }_{\text {enth }}^{\text {emp }}$	$0_{0}^{\text {andeath }}$ o.							
		3	6										
				-	6								
Use known multiplication facts to work out associated divisions.				$\begin{array}{ll} 24 \div 4=\underline{6} & \text { use } 4 \times ?=24 \\ 35 \div 7=\underline{5} & \text { use } 7 \times ?=35 \end{array}$									
Mental division using partitioning				$\begin{gathered} 64 \div 4=16 \\ (40 \div 4)+(24 \div 4) \\ 10+6=16 \end{gathered}$									
		$\begin{array}{rrrr} 102 & \div & 3 & =34 \\ (90 \div 3) & +(12 \div 3) & \\ 30 & + & 4 & =34 \end{array}$											
		$\begin{array}{r} 91 \div 7 \\ (70 \div 7)+(21 \div 7) \\ 10+3 \end{array}$											
		$\begin{gathered} 196 \div 6 \quad=32 \operatorname{rem} 4 \\ (180 \div 6) \div(12 \div 6) \end{gathered}$											

page 12 Division 2 of 4

Chunking Up	$64 \div 4=16$ $\frac{10+6}{4 \longdiv { 4 0 + 2 4 }}=16$
	$91 \div 7=13$ ($\quad 7 \longdiv { 7 0 + 3 } = 1 3$
	$102 \div 3=34 \quad \begin{aligned} & 30+4 \\ & 3 \longdiv { 9 0 + 1 2 } \end{aligned}=34$
This method is based on separating the dividend into multiples of the	$3 \longdiv { 1 0 + 1 0 + 1 0 + 4 } = 3 4$
chunks but with practice they should look for bigger chunks of the divisor.	$\begin{aligned} 196 \div 6=32 \text { rem } 4 & =32 \frac{4}{6}=32 \frac{2}{3} \\ 30+2 & =32 \text { rem } 4 \end{aligned}$
Short Division	$\begin{array}{lrr} 64 \div 4=16 & 4 \longdiv { 6 ^ { 2 } 4 } & 17 \\ 91 \div 7=13 & 34 & 7 \longdiv { 9 ^ { 2 } 1 } \\ 102 \div 3=34 & 3 \longdiv { 1 ^ { 1 } 0 ^ { 1 } 2 } & \end{array}$
	What to do with remainders. Decimal or fraction?

